
Block Cipher

The Workhorse of Crypto

Block Cipher

I Block ciphers take as input a block of plaintext and generate the
corresponding ciphertext.

I Fundamental goal of a block cipher is to provide data confidentiality.

I They also serve as a primary building block for other cryptographic
primitives like MAC, hash functions etc.

I Symmetric key block ciphers are extremely fast.
I Example:

1. Data Encryption Standard.
2. Advanced Encryption Standard.

Definition

I A deterministic cryptosystem E = (E ;D)
I Message space and ciphertext space: a finite set X
I Key space: K.
I E is a block cipher defined over (K;X).

I For every key k ∈ K, define fk := E (k ;)

fk : X −→ X

I For correctness of decryption what property fk needs?

I fk must be a permutation on X
I D(k;) is the inverse function f −1k .

Definition

I A deterministic cryptosystem E = (E ;D)
I Message space and ciphertext space: a finite set X
I Key space: K.
I E is a block cipher defined over (K;X).

I For every key k ∈ K, define fk := E (k ;)

fk : X −→ X

I For correctness of decryption what property fk needs?
I fk must be a permutation on X
I D(k ;) is the inverse function f −1k .

Security

I What security property should E satisfy?

I Computationally indistinguishable from a random permutation.
I Suppose: block-size = key-size = 128-bits

I How many permutation functions are possible?
I How many fk are possible?

I Claim:
I A secure block cipher is unpredictable.
I Unpredictability implies key recovery is infeasible.

Security

I What security property should E satisfy?

I Computationally indistinguishable from a random permutation.
I Suppose: block-size = key-size = 128-bits

I How many permutation functions are possible?
I How many fk are possible?

I Claim:
I A secure block cipher is unpredictable.
I Unpredictability implies key recovery is infeasible.

Security

I What security property should E satisfy?

I Computationally indistinguishable from a random permutation.
I Suppose: block-size = key-size = 128-bits

I How many permutation functions are possible?
I How many fk are possible?

I Claim:
I A secure block cipher is unpredictable.
I Unpredictability implies key recovery is infeasible.

Block Cipher: Desirable Properties

I Security:

1. Confusion: relationship between the key and the ciphertext should be
complicated.

2. Diffusion: every single ciphertext bit should depend on all the plaintext
bits.

3. Keysize: small enough to manage but large to make exhaustive search
infeasible.

I Efficiency:

1. Encryption and decryption rate should be high.
2. Easy to implement (and analyze).
3. Suitable for hardware and/or software.

Data Encryption Standard (DES)

I The first commercially available modern cipher with fully specified
implementation details in the open literature.
I Note: Design principles are still classified.

I In the early 70s US National Bureau of Standards (now NIST)
solicited proposals for encryption algorithms to protect computer data.

I IBM’s submission was later adopted as DES.

I In the early eighties DES was adopted as a US Banking Standard and
used widely all over the world.

I DES has a block size of 64-bits and key size of 56-bits.
I NSA (allegedly) forced the keysize to be restricted to 56-bits.

I In 1977 Diffie and Hellman suggested that a special purpose machine
can be built to exhaustively search the keyspace of DES at an
estimated cost of USD 20M.

Feistel Network/Cipher

I Parameters:

1. Block length: 2n-bits (divided into two equal halves).
2. Key size: `-bits.
3. Number of rounds: r .

I M =?, C =? and K =?

I Key Scheduling Algorithm: Derive `′-bit “subkeys” k1, k2, . . . , kr from
the secret key k.

I Round function: Each subkey defines a round function:

fi : {0, 1}n × {0, 1}`′ → {0, 1}n

I Such a block cipher is called iterated block cipher.

Feistel Network/Cipher

I Parameters:

1. Block length: 2n-bits (divided into two equal halves).
2. Key size: `-bits.
3. Number of rounds: r .

I M =?, C =? and K =?

I Key Scheduling Algorithm: Derive `′-bit “subkeys” k1, k2, . . . , kr from
the secret key k.

I Round function: Each subkey defines a round function:

fi : {0, 1}n × {0, 1}`′ → {0, 1}n

I Such a block cipher is called iterated block cipher.

Encryption/Decryption

Encryption proceeds through r rounds.

I Divide the 2n-bit message into two equal halves: m = (m0,m1).

I Round 1: (m0,m1)→ (m1,m2) where m2 = m0 ⊕ f1(m1, k1).

I Round 2: (m1,m2)→ (m2,m3) where m3 = m1 ⊕ f2(m2, k2).

I · · ·
I Round r : (mr−1,mr)→ (mr ,mr+1) where mr+1 = mr−1 ⊕ fr (mr , kr).

I Ciphertext: c = (mr+1,mr).

Decryption: ?

Same process with keys reversed!

I Given c = (mr+1,mr), compute mr−1 = mr+1 ⊕ fr (mr , kr).

I Then compute mr−2, . . . ,m1,m0.

Encryption/Decryption

Encryption proceeds through r rounds.

I Divide the 2n-bit message into two equal halves: m = (m0,m1).

I Round 1: (m0,m1)→ (m1,m2) where m2 = m0 ⊕ f1(m1, k1).

I Round 2: (m1,m2)→ (m2,m3) where m3 = m1 ⊕ f2(m2, k2).

I · · ·
I Round r : (mr−1,mr)→ (mr ,mr+1) where mr+1 = mr−1 ⊕ fr (mr , kr).

I Ciphertext: c = (mr+1,mr).

Decryption: ?
Same process with keys reversed!

I Given c = (mr+1,mr), compute mr−1 = mr+1 ⊕ fr (mr , kr).

I Then compute mr−2, . . . ,m1,m0.

Feistel Cipher: Few Features

I The encryption must be invertible.
I The round function fi must be invertible. [True/False?]

I Implementation:
I Encryption: Implement just one round and then reuse the code for the

other rounds.
I Decryption: The same code for encryption can be reused with the

subkeys used in reverse order.

I DES is an example of Feistel cipher with n = 32, r = 16 and ` = 56.

Feistel Cipher: Few Features

I The encryption must be invertible.
I The round function fi must be invertible. [True/False?]

I Implementation:
I Encryption: Implement just one round and then reuse the code for the

other rounds.
I Decryption: The same code for encryption can be reused with the

subkeys used in reverse order.

I DES is an example of Feistel cipher with n = 32, r = 16 and ` = 56.

Security: Small Key Size

I Exhaustive key search requires only 256 steps and can be easily
parallelized.

I DES Challenge from RSA Security: given three pairs of (m, c) find
the corresponding key.

1. [1997] The first challenge was broken in 96 days.
2. [1998] The second challenge was broken in 56 hours by Deep Crack

machine of Electronic Frontier Foundation (EFF).
3. [1999] The third challenge was broken in 22 hours 15 minutes by Deep

Crack and a network of around 100,000 computers.

I See www.distributed.net if you’re interested!

Security: Small Block Size

I DES is a deterministic encryption scheme.
I Same message encrypted under the same key always gives the same

ciphertext.

I If plaintext blocks are distributed uniformly at random then we can
expect a collision with a high probability after observing 232

ciphertext blocks.
I Ciphertext reveals some information about the underlying plaintext.

Multiple Encryption

I Re-encrypt the ciphertext once (or more) using independent keys.
I Double-DES:

I Key: (k1, k2).
I Encryption: Ek2(Ek1(m)), E is DES.
I Key length is now double (112-bits) but block length remains 64-bits.

I Does multiple encryption always give increased security?

I Fix a DES key k , Ek : {0, 1}64 → {0, 1}64 defines a permutation.

I The 256 keys define 256 such potentially different permutations.

I What if given any two k1, k2 there exists a k3 s.t
Ek3(m) = Ek2(Ek1(m))?

I [Fact:] The set of 256 permutations defined by 256 DES keys is not
closed under functional composition.

Multiple Encryption

I Re-encrypt the ciphertext once (or more) using independent keys.
I Double-DES:

I Key: (k1, k2).
I Encryption: Ek2(Ek1(m)), E is DES.
I Key length is now double (112-bits) but block length remains 64-bits.

I Does multiple encryption always give increased security?

I Fix a DES key k , Ek : {0, 1}64 → {0, 1}64 defines a permutation.

I The 256 keys define 256 such potentially different permutations.

I What if given any two k1, k2 there exists a k3 s.t
Ek3(m) = Ek2(Ek1(m))?

I [Fact:] The set of 256 permutations defined by 256 DES keys is not
closed under functional composition.

Multiple Encryption

I Re-encrypt the ciphertext once (or more) using independent keys.
I Double-DES:

I Key: (k1, k2).
I Encryption: Ek2(Ek1(m)), E is DES.
I Key length is now double (112-bits) but block length remains 64-bits.

I Does multiple encryption always give increased security?

I Fix a DES key k , Ek : {0, 1}64 → {0, 1}64 defines a permutation.

I The 256 keys define 256 such potentially different permutations.

I What if given any two k1, k2 there exists a k3 s.t
Ek3(m) = Ek2(Ek1(m))?

I [Fact:] The set of 256 permutations defined by 256 DES keys is not
closed under functional composition.

Multiple Encryption

I Re-encrypt the ciphertext once (or more) using independent keys.
I Double-DES:

I Key: (k1, k2).
I Encryption: Ek2(Ek1(m)), E is DES.
I Key length is now double (112-bits) but block length remains 64-bits.

I Does multiple encryption always give increased security?

I Fix a DES key k , Ek : {0, 1}64 → {0, 1}64 defines a permutation.

I The 256 keys define 256 such potentially different permutations.

I What if given any two k1, k2 there exists a k3 s.t
Ek3(m) = Ek2(Ek1(m))?

I [Fact:] The set of 256 permutations defined by 256 DES keys is not
closed under functional composition.

Double DES

I Key: (k1, k2).

I Encryption: c = Ek2(Ek1(m)), E is DES encryption.

I Decryption: m = E−1k1
(E−1k2

(c)).

I Key length is now double (112-bits) – exhaustive key search is
infeasible.

I Block length remains 64-bits.

Note: DES is an endomorphic cryptosystem, P = C.

Is Double-DES more secure than DES?

Attacking 2-DES: Meet-in-the-Middle

c = Ek2(Ek1(m)) thus E−1k2
(c) = Ek1(m).

Input: 3 known plaintext/ciphertext pairs (m1, c1), (m2, c2), (m3, c3).
Output: The secret key (k1, k2).

1. For each h2 ∈ {0, 1}56:
I Compute E−1h2

(c1) and store [E−1h2
(c1), h2] in a table T sorted by the

first component.

2. For each h1 ∈ {0, 1}56 do the following:

2.1 Compute Eh1(m1)
2.2 Search for Eh1(m1) in T (Eh1(m1) matches table entry [E−1h2

(c1), h2] if

Eh1(m1) = E−1h2
(c1).)

2.3 For each match [E−1h2
(c1), h2] in the table, check whether

Eh2(Eh1(m2)) = c2 ; if so then check whether Eh2(Eh1(m3)) = c3.
2.4 If both checks pass, then output (h1, h2) and STOP.

Attacking 2-DES: Meet-in-the-Middle

c = Ek2(Ek1(m)) thus E−1k2
(c) = Ek1(m).

Input: 3 known plaintext/ciphertext pairs (m1, c1), (m2, c2), (m3, c3).
Output: The secret key (k1, k2).

1. For each h2 ∈ {0, 1}56:
I Compute E−1h2

(c1) and store [E−1h2
(c1), h2] in a table T sorted by the

first component.

2. For each h1 ∈ {0, 1}56 do the following:

2.1 Compute Eh1(m1)
2.2 Search for Eh1(m1) in T (Eh1(m1) matches table entry [E−1h2

(c1), h2] if

Eh1(m1) = E−1h2
(c1).)

2.3 For each match [E−1h2
(c1), h2] in the table, check whether

Eh2(Eh1(m2)) = c2 ; if so then check whether Eh2(Eh1(m3)) = c3.
2.4 If both checks pass, then output (h1, h2) and STOP.

Attacking 2-DES: Meet-in-the-Middle

c = Ek2(Ek1(m)) thus E−1k2
(c) = Ek1(m).

Input: 3 known plaintext/ciphertext pairs (m1, c1), (m2, c2), (m3, c3).
Output: The secret key (k1, k2).

1. For each h2 ∈ {0, 1}56:
I Compute E−1h2

(c1) and store [E−1h2
(c1), h2] in a table T sorted by the

first component.

2. For each h1 ∈ {0, 1}56 do the following:

2.1 Compute Eh1(m1)
2.2 Search for Eh1(m1) in T (Eh1(m1) matches table entry [E−1h2

(c1), h2] if

Eh1(m1) = E−1h2
(c1).)

2.3 For each match [E−1h2
(c1), h2] in the table, check whether

Eh2(Eh1(m2)) = c2 ; if so then check whether Eh2(Eh1(m3)) = c3.
2.4 If both checks pass, then output (h1, h2) and STOP.

Attacking 2-DES: Meet-in-the-Middle

c = Ek2(Ek1(m)) thus E−1k2
(c) = Ek1(m).

Input: 3 known plaintext/ciphertext pairs (m1, c1), (m2, c2), (m3, c3).
Output: The secret key (k1, k2).

1. For each h2 ∈ {0, 1}56:
I Compute E−1h2

(c1) and store [E−1h2
(c1), h2] in a table T sorted by the

first component.

2. For each h1 ∈ {0, 1}56 do the following:

2.1 Compute Eh1(m1)
2.2 Search for Eh1(m1) in T (Eh1(m1) matches table entry [E−1h2

(c1), h2] if

Eh1(m1) = E−1h2
(c1).)

2.3 For each match [E−1h2
(c1), h2] in the table, check whether

Eh2(Eh1(m2)) = c2 ; if so then check whether Eh2(Eh1(m3)) = c3.
2.4 If both checks pass, then output (h1, h2) and STOP.

Why 3 Plaintext/Ciphertext Pairs?

I Suppose E is a block cipher with key space K = {0, 1}`, and
plaintext/ciphertext space P = C = {0, 1}n.

I Suppose k ′ ∈ K is the secret key and (mi , ci), 1 ≤ i ≤ t are the
known plaintext/ciphertext pairs, where mi s are all distinct.
I ci = Ek′(mi) for all 1 ≤ i ≤ t.

I What should be the value of t to ensure (with very high probability)
that there is only one key k ′ ∈ K such that Ek ′(mi) = ci for all
1 ≤ i ≤ t?

Why 3-Pairs of PT/CT is Enough

I For each k ∈ K, Ek : {0, 1}n → {0, 1}n is a permutation.

I [Heuristic Assumption] For each k ∈ K, Ek is a random function (i.e.,
a randomly selected function).

1. The assumption is not correct as Ek is not random and a random
function is almost certainly not a permutation.

2. However, the assumption turns out to be quite good for the analysis!

I Fix any k ∈ K s.t. k 6= k ′ (k ′ is the unknown key we want).

I Probability that Ek(mi) = ci for all 1 ≤ i ≤ t is

1

2n
· 1

2n
· · · 1

2n
=

1

2nt

I The expected number of keys k ∈ K (excluding k ′) so that
Ek(mi) = ci for all 1 ≤ i ≤ t is:

EK =
2` − 1

2nt

Why 3-Pairs of PT/CT is Enough

I For each k ∈ K, Ek : {0, 1}n → {0, 1}n is a permutation.
I [Heuristic Assumption] For each k ∈ K, Ek is a random function (i.e.,

a randomly selected function).
1. The assumption is not correct as Ek is not random and a random

function is almost certainly not a permutation.
2. However, the assumption turns out to be quite good for the analysis!

I Fix any k ∈ K s.t. k 6= k ′ (k ′ is the unknown key we want).

I Probability that Ek(mi) = ci for all 1 ≤ i ≤ t is

1

2n
· 1

2n
· · · 1

2n
=

1

2nt

I The expected number of keys k ∈ K (excluding k ′) so that
Ek(mi) = ci for all 1 ≤ i ≤ t is:

EK =
2` − 1

2nt

Why 3-Pairs of PT/CT is Enough

I For each k ∈ K, Ek : {0, 1}n → {0, 1}n is a permutation.
I [Heuristic Assumption] For each k ∈ K, Ek is a random function (i.e.,

a randomly selected function).
1. The assumption is not correct as Ek is not random and a random

function is almost certainly not a permutation.
2. However, the assumption turns out to be quite good for the analysis!

I Fix any k ∈ K s.t. k 6= k ′ (k ′ is the unknown key we want).

I Probability that Ek(mi) = ci for all 1 ≤ i ≤ t is

1

2n
· 1

2n
· · · 1

2n
=

1

2nt

I The expected number of keys k ∈ K (excluding k ′) so that
Ek(mi) = ci for all 1 ≤ i ≤ t is:

EK =
2` − 1

2nt

Analysis of Meet-in-the-Middle Attack

Double-DES Encryption: c = Ek2(Ek1(m)).
Goal: Find (k1, k2).
Here ` = 112-bits and n = 64-bits.

1. For t = 1, EK ≈ 248.
I Expected number of Double-DES keys (h1, h2) s.t. Eh2(Eh1(m1)) = c1

is 248.

2. Among these 248 keys, the expected number of keys that also satisfy
Eh2(Eh1(m2)) = c2 is approximately 248

264
= 1

216
.

3. For t = 3, we have EK ≈ 1
280

. If we find (h1, h2) s.t.
Eh2(Eh1(mi)) = ci for 1 ≤ i ≤ 3 then with a very high probability
(h1, h2) = (k1, k2).

Analysis of Meet-in-the-Middle Attack

Double-DES Encryption: c = Ek2(Ek1(m)).
Goal: Find (k1, k2).
Here ` = 112-bits and n = 64-bits.

1. For t = 1, EK ≈ 248.
I Expected number of Double-DES keys (h1, h2) s.t. Eh2(Eh1(m1)) = c1

is 248.

2. Among these 248 keys, the expected number of keys that also satisfy
Eh2(Eh1(m2)) = c2 is approximately 248

264
= 1

216
.

3. For t = 3, we have EK ≈ 1
280

. If we find (h1, h2) s.t.
Eh2(Eh1(mi)) = ci for 1 ≤ i ≤ 3 then with a very high probability
(h1, h2) = (k1, k2).

Analysis of Meet-in-the-Middle Attack

Double-DES Encryption: c = Ek2(Ek1(m)).
Goal: Find (k1, k2).
Here ` = 112-bits and n = 64-bits.

1. For t = 1, EK ≈ 248.
I Expected number of Double-DES keys (h1, h2) s.t. Eh2(Eh1(m1)) = c1

is 248.

2. Among these 248 keys, the expected number of keys that also satisfy
Eh2(Eh1(m2)) = c2 is approximately 248

264
= 1

216
.

3. For t = 3, we have EK ≈ 1
280

. If we find (h1, h2) s.t.
Eh2(Eh1(mi)) = ci for 1 ≤ i ≤ 3 then with a very high probability
(h1, h2) = (k1, k2).

Resource Requirement

I Number of DES evaluation: 256 + 256 + 2× 248 ≈ 257.

I Storage requirement: 256(64 + 56)bits ≈ 106TB.

Conclusion: The effective key-length for Double-DES is essentially same as
DES.

I Double-DES is not significantly secure than DES.

Claim: The memory requirement in the attack can be reduced at the
expense of time – Time Memory Trade-Off Attack:
Time: 256+t steps, Memory: 256−t units, i ≤ t ≤ 55.
Ref: A Cryptanalytic Time-Memory Trade-Off by Martin Hellman.

Triple-DES

I Key: (k1, k2, k3), where k1, k2, k3 ∈R {0, 1}56.

I Encryption: c = Ek3(Ek2(Ek1(m))) where E is the DES Encryption
function.

I Decryption: m = E−1k1
(E−1k2

(E−1k3
(c))).

I Key length is 168-bits and Block length is 64-bits.

I Dictionary Attack: Adversary stores a large table (≤ 264) of
plaintext-ciphertext pair.
I Counter-measure: Change secret key periodically.

I Meet-in-the-Middle Attack: Takes approx. 2112 steps. [Exercise]

I Sweet32: Birthday attack demonstrated in 2016 exploiting the 64-bit
block size.

I Triple-DES is still in use though it is suggested to be replaced by AES.

Triple-DES

I Key: (k1, k2, k3), where k1, k2, k3 ∈R {0, 1}56.

I Encryption: c = Ek3(Ek2(Ek1(m))) where E is the DES Encryption
function.

I Decryption: m = E−1k1
(E−1k2

(E−1k3
(c))).

I Key length is 168-bits and Block length is 64-bits.
I Dictionary Attack: Adversary stores a large table (≤ 264) of

plaintext-ciphertext pair.
I Counter-measure: Change secret key periodically.

I Meet-in-the-Middle Attack: Takes approx. 2112 steps. [Exercise]

I Sweet32: Birthday attack demonstrated in 2016 exploiting the 64-bit
block size.

I Triple-DES is still in use though it is suggested to be replaced by AES.

Iterated Block Cipher: Key Idea

The basic design principle:

1. Round Cipher: a simple block cipher (Ê , D̂)
I DES: Êk(x ||y) = (y ||x ⊕ f (k , y))
I This one round cipher is obviously insecure!

2. Key Expansion: Use a simple function to expand the key k to r round
keys k1, k2, . . . , kr .

I Challenge: Design a round cipher which is very fast and gives a secure
block cipher within a few rounds.

I A linear function cannot be used to get a secure block cipher.

Substitution-Permutation Network (SPN)

Iterated block cipher where each round consists of a substitution and a
permutation.

SPN: Round Keys

I The secret key k is used to derive round keys k1, k2, . . . , kh, kh+1 (h:
number of rounds).
I In the i-th round, ki is XOR-ed with the input before applying the

substitution.

I The output of the last round is XOR-ed with kh+1 to generate the
ciphertext.
I Prevents the adversary from attempting to decrypt the ciphertext by

undoing the final substitution and permutation operations.

I Whitening: Internal state of the cipher is protected by k1 and kh+1.

SPN: Encryption/Decryption

Encryption:

A← plaintext
For i = 1 . . . h do:

A← A⊕ ki
A← S(A)
A← P(A)

A← A⊕ kh+1

ciphertext ← A

Decryption: Just the reverse.

Random Permutation

I A block cipher is a permutation: Fk : {0, 1}n → {0, 1}n.
I Ideally it should be a truly random permutation.
I How many bits do you need to represent a random permutation on

n-bits?

≈ n · 2n (not practical when n ≥ 64).

I Build a “random looking” permutation for large block-length from
smaller random/random-looking permutations.

I Example:
I For n = 64, Fk(x) = f1(x1)f2(x2) · · · f8(x8) where the secret key k

determines 8 random permutations on 8-bits.
I Can you distinguish Fk(x) from the output of a truly random

permutation?

Random Permutation

I A block cipher is a permutation: Fk : {0, 1}n → {0, 1}n.
I Ideally it should be a truly random permutation.
I How many bits do you need to represent a random permutation on

n-bits?
≈ n · 2n (not practical when n ≥ 64).

I Build a “random looking” permutation for large block-length from
smaller random/random-looking permutations.

I Example:
I For n = 64, Fk(x) = f1(x1)f2(x2) · · · f8(x8) where the secret key k

determines 8 random permutations on 8-bits.
I Can you distinguish Fk(x) from the output of a truly random

permutation?

Random Permutation

I A block cipher is a permutation: Fk : {0, 1}n → {0, 1}n.
I Ideally it should be a truly random permutation.
I How many bits do you need to represent a random permutation on

n-bits?
≈ n · 2n (not practical when n ≥ 64).

I Build a “random looking” permutation for large block-length from
smaller random/random-looking permutations.

I Example:
I For n = 64, Fk(x) = f1(x1)f2(x2) · · · f8(x8) where the secret key k

determines 8 random permutations on 8-bits.
I Can you distinguish Fk(x) from the output of a truly random

permutation?

Mixing

I The output bits of Fk(x) are re-ordered/mixed.
I x ′ ← Fk(x), then permute the bits of x ′ to obtain x1.

I Recall one round of SPN:
A← A⊕ ki
A← S(A)
A← P(A)

I Obviously one round is insecure. (Recover the secret key given one
input/output pair.)

I Repeat the rounds several times. Hopefully small changes in input
will have significant change in the output.

Mixing

I The output bits of Fk(x) are re-ordered/mixed.
I x ′ ← Fk(x), then permute the bits of x ′ to obtain x1.

I Recall one round of SPN:
A← A⊕ ki
A← S(A)
A← P(A)

I Obviously one round is insecure. (Recover the secret key given one
input/output pair.)

I Repeat the rounds several times. Hopefully small changes in input
will have significant change in the output.

Mixing

I The output bits of Fk(x) are re-ordered/mixed.
I x ′ ← Fk(x), then permute the bits of x ′ to obtain x1.

I Recall one round of SPN:
A← A⊕ ki
A← S(A)
A← P(A)

I Obviously one round is insecure. (Recover the secret key given one
input/output pair.)

I Repeat the rounds several times. Hopefully small changes in input
will have significant change in the output.

SPN Structure

I The smaller permutations fi act as fixed substitution function or
S-boxes.

I Unlike the Feistel Network, the S-boxes must be invertible in SPN.

I Avalanche effect: small change in input should result in large change
to the output.

I SPN with several rounds achieve avalanche effect if

1. S-boxes are so designed that changing a single input bit changes at
least two bits in the output of the S-box.

2. Output bits of any particular S-box is spread across different S-boxes in
the next round by the mixing permutation.

Advanced Encryption Standard

I AES is an SPN but the permutation operation is replaced by two
linear transformations (one of them is a permutation).

I All operations are byte oriented.
I S-box maps 8-bits to 8-bits.
I Allows efficient implementation on various platforms.

I Block size of AES is 128-bits.

I Each round key is also 128-bits.
I AES accepts three different key lengths and the number of rounds

depends on the key length:

1. 128-bit key: 10 rounds.
2. 192-bit key: 12 rounds.
3. 256-bit key: 14 rounds.

Performance

Key Size Block Size No. of Rounds Performance
(bits) (bits) (MB/sec)

DES 56 64 16 80

3DES 168 64 48 30

AES-128 128 128 10 163

AES-256 256 128 14 115

On Intel Xeon CPU E5-2698 v3 at 2.30GHz.

I Several processors provide special instruction sets for AES, called
AES-NI leading to significant speed-up.

I AES-128-NI ≈ 2400 MB/sec and AES-256-NI ≈ 1800 MB/sec

Encrypting Large Messages

I You’ve a secure block cipher and a confidential message.
I Suppose the block cipher has a block length of n-bits and (for

simplicity) the message length is some multiple of n, say, jn-bits.

I How will you generate the ciphertext?

I Divide the message into j blocks each of length n-bits.
I Encrypt the message blocks in sequence and return the ciphertext.
I This is called Electronic Codebook mode (ECB).

I Is ECB a secure mode of encrypting your confidential data?

Encrypting Large Messages

I You’ve a secure block cipher and a confidential message.
I Suppose the block cipher has a block length of n-bits and (for

simplicity) the message length is some multiple of n, say, jn-bits.

I How will you generate the ciphertext?
I Divide the message into j blocks each of length n-bits.
I Encrypt the message blocks in sequence and return the ciphertext.
I This is called Electronic Codebook mode (ECB).

I Is ECB a secure mode of encrypting your confidential data?

Encrypting Large Messages

I You’ve a secure block cipher and a confidential message.
I Suppose the block cipher has a block length of n-bits and (for

simplicity) the message length is some multiple of n, say, jn-bits.

I How will you generate the ciphertext?
I Divide the message into j blocks each of length n-bits.
I Encrypt the message blocks in sequence and return the ciphertext.
I This is called Electronic Codebook mode (ECB).

I Is ECB a secure mode of encrypting your confidential data?

A picture is worth a thousand words!

Encryption by ECB mode [Source: Wikipedia].

Zoom at the beginning of the Pandemic used ECB for encryption!
See: Move Fast and Roll Your Own Crypto: A Quick Look at the
Confidentiality of Zoom Meetings [The Citizen Lab report, April 2020]

Cipher Block Chaining (CBC) Mode

Encrypt:

I Start with an initialization vector IV ∈R {0, 1}n and set c0 = IV.

I Compute ci = Ek(mi ⊕ ci−1) for 1 ≤ i ≤ j .

I Ciphertext: c0, c1, . . . , cj . Note: IV is sent in the clear.

Decrypt:

I Compute mi = E−1k (ci)⊕ ci−1, for 1 ≤ i ≤ j .

Note:

1. The IV shouldn’t be predictable.

2. Identical plaintexts with different IV results in different ciphertexts.

3. Any change in a plaintext block (mi) affects ci , ci+1,
I Useful in the construction of a message authentication code (MAC).

Cipher Block Chaining (CBC) Mode

Encrypt:

I Start with an initialization vector IV ∈R {0, 1}n and set c0 = IV.

I Compute ci = Ek(mi ⊕ ci−1) for 1 ≤ i ≤ j .

I Ciphertext: c0, c1, . . . , cj . Note: IV is sent in the clear.

Decrypt:

I Compute mi = E−1k (ci)⊕ ci−1, for 1 ≤ i ≤ j .

Note:

1. The IV shouldn’t be predictable.

2. Identical plaintexts with different IV results in different ciphertexts.

3. Any change in a plaintext block (mi) affects ci , ci+1,
I Useful in the construction of a message authentication code (MAC).

Other Modes of Operation

I Output feedback mode (OFB): An initialization vector IV is encrypted
repeatedly using the block cipher to generate a key stream – actually
a stream cipher.

I Cipher feedback mode (CFB): Also a stream cipher.
I c0 = IV.
I zi = Ek(ci−1).
I ci = mi ⊕ zi .

I Counter mode
I Select a counter ctr and increment it as Ti = ctr + i − 1 mod 2n where

n is the block length.
I zi = Ek(Ti) and ci = mi ⊕ zi .
I Allows parallelism.

Reference

1. Video Lectures by Alfred Menezes:
https://cryptography101.ca/crypto101-building-blocks
I Chapter V2 for Symmetric Key Encryption

2. Boneh and Shoup [draft]: Chapter 3 for Stream Cipher and Chapter 4
for Block Cipher.

