
Problem 1. Encryption with a deck of cards. Alice, Bob and Eve are playing a card game.
Alice shuffles a deck of cards and deals it all out to herself and Bob (each gets half of the 52 distinct
cards). Alice now wishes to send a secret message m to Bob by saying something aloud. Everybody
is in the same room, and eavesdropper Eve is listening in: she hears everything Alice says (but Eve
cannot see the face of Alice’s and Bob’s cards).

a) Suppose Alice’s message m is a string of 48-bits. Describe how Alice can communicate m to Bob in
such a way that Eve will have no information about what is m. Note: Alice and Bob are allowed
to devise a public strategy together before the cards are dealt.

b) Now suppose that Alice’s message m is 49 bits. Show that there exists no protocol that allows
Alice to communicate m to Bob in such a way that Eve will have no information about m.

Problem 2. Perfect Security. A deterministic symmetric encryption scheme1 E specifies a pair of
algorithms E = (Enc,Dec) with three associated sets: the key space K, the message space M and the
ciphertext space C.
• The deterministic encryption algorithm Enc : K×M→ C takes as input a key k ∈ K and a message

m ∈M, and produces a ciphertext c ∈ C.
• The deterministic decryption algorithm Dec : K × C → M takes as input a key k ∈ K and a

ciphertext c ∈ C, and returns a message m ∈M.

We require that E satisfies the decryption correctness property, meaning that any ciphertext produced
by Enc is correctly decryptable using Dec. Formally, for all keys k ∈ K and for all messages m ∈ M,
it holds that Dec(k,Enc(k,m)) = m.

We say that encryption scheme E is perfectly secure if for all m0,m1 ∈M, and all c ∈ C, we have

Pr[Enc(k,m0) = c] = Pr[Enc(k,m1) = c],

where k is a random variable uniformly distributed over K. Intuitively, this means that an E ciphertext
leaks no information about the encrypted message. An alternative definition of perfect security (for
one-time pads) was provided in class.

a) Devise an encryption scheme E90 such that (1) given an encryption of any message, an adversary
can figure out 90% of the secret key (i.e. the ciphertext leaks this information), but (2) the scheme
is still perfectly secure, despite 90% of the key being revealed. Prove that the scheme is secure and
that it is correct. When constructing your encryption scheme, you should define algorithms Enc
and Dec as well as the associated sets K,M and C.

b) Devise an encryption scheme Ebroken such that (1) given an encryption of any message, an adversary
learns nothing about the secret key, but (2) the scheme is completely broken (as in, given the
ciphertext, an adversary can completely recover the plaintext).

c) Build an encryption scheme E1 such that an adversary can recover the first bit of any message
m ∈M from its encryption, but E1 is nonetheless perfectly secure. Now, in addition to the above,
letM = {0, 1}n for any n ≥ 1; show that any encryption scheme E with message spaceM is not
perfectly secure (if the first bit of any message m ∈ M can be recovered from its encryption, as
per above).

d) Let E be an encryption scheme such that |K| ̸= 0 and C = {Enc(k,m) : k ∈ K,m ∈M}. Show that
if E is perfectly secure then |M| ≤ |C| ≤ |K|. Explain why some assumptions about K and C (such
as stated above) are necessary to prove this claim.

Problem 3. PRGs. Let ℓ, n ∈ N such that ℓ < n. Let G : {0, 1}ℓ → {0, 1}n be a secure PRG
(pseudorandom generator). For each of the new constructions below, determine if it is also a secure
PRG. If you believe that a derived generator is not secure then provide an attack. If you believe that
a derived generator is secure then try to justify that as formally as possible (if you have seen proofs

1We will define and discuss symmetric and asymmetric encryption schemes in detail later in class. For this exercise
you only need the definition provided here.
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by reduction, that is a useful technique here). In the following, s, s1 and s2 are strings in {0, 1}ℓ, and
∥ denotes string concatenation. The bit-wise XOR operation is denoted by ⊕. The bit-wise AND
operation is denoted by ∧. Some of the derived generators have domains or ranges that differ from that
of G.

a) G1(s) := G(s)⊕ 1n, where 1n is the bit-string consisting of n 1s, for example 14 = 1111.

b) G2(s) := G(s)[0 . . . n− 2]. Here we treat the output string G(s) as an array and use vector notation
to indicate that we truncate the result by removing the last bit. For example abcd[0 . . . 2] = abc.

c) G3(s) := G(s) ∥G(s). Note that the range of G3 is {0, 1}2n.
d) G4(s1 ∥ s2) := s1 ∥G(s2). Note that G4 is a function from {0, 1}2ℓ to {0, 1}ℓ+n.

e) G5(s) := G(s) ∥G(G(s)[0 . . . ℓ− 1]). Note that the range of G5 is {0, 1}ℓ+n.

f) G6(s1 ∥ s2) := G(s1) ∧ G(s2). Note that the domain of G6 is {0, 1}2ℓ.
g) G7(s1 ∥ s2) := G(s1)⊕ G(s2). Note that the domain of G7 is {0, 1}2ℓ.

Problem 4. Block Ciphers. Consider the following definition of a block cipher. This definition is
equivalent to the one in the lecture slides.

Definition 1. A function E : K ×X → Y is called a block cipher if

(1) X = Y and

(2) for all K ∈ K, EK : X → X is an efficiently computable permutation on the set X .

Here EK(x) = E(K, x) for all x ∈ X , which is a common shorthand notation.

Task: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher.

a) Let the function F1 : {0, 1}k × {0, 1}n → {0, 1}n be defined by

F1(K, x) = E(K, x)⊕ x.

Is F1 a block cipher? Prove your answer.

b) Let the function F2 : ({0, 1}k × {0, 1}n)× {0, 1}n → {0, 1}n be defined by

F2((K1,K2), x) = E(K1,K2 ⊕ x).

The keyspace of F2 is {0, 1}k × {0, 1}n. Show that F2 is a block cipher and that it is PRP-secure
assuming that E is PRP-secure.

c) Let the function F3 : ({0, 1}k × {0, 1}n)× {0, 1}n → {0, 1}n be defined by

F3((K1,K2), x) = E(K1,K2)⊕ x.

Show that F3 is a block cipher. Define a distinguisher A attacking the PRP-security of F3, such
that A makes exactly two distinct queries to its challenger (we call this a 2-query adversary) and

achieves AdvPRP
F3

(A) = 1

2
· (1− 1

2n − 1
). (This is essentially the highest possible advantage.) Note

that despite the similarities between F2 and F3, one is secure while the other is not. Think about
how misplaced parentheses can have important consequences for security!

d) Let the function F4 : {0, 1}n × {0, 1}n → {0, 1}n be defined by

F4(K,x) = E(K, x)⊕ E(K,K).

Prove that F4 is a block cipher. Prove that F4 does not have strong-PRP security. Provide an
intuition explaining why F4 should be a secure PRP assuming that E is PRP-secure. Note: Formally
proving this is difficult.
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Problem 5. IND-CPA security. Suppose SE = (KGen,Enc,Dec) is an IND-CPA secure encryp-
tion scheme with key space K and message spaceM, such that K =M = {0, 1}n for some even integer
n. You can assume that messages of the same length have equally-sized ciphertexts (if not stated oth-
erwise). Which of the following encryption algorithms are guaranteed to represent correct encryption
schemes with IND-CPA security?

a) Enca(K,m) = Enc(K, (m, r)). Here, the message space for Enca is {0, 1}n/2, r is a random n/2-bit
string, and (m, r) is the concatenation of m and r.

b) Encb(K,m) = Enc(K,m)⊕ Enc(K, 0n).

c) Encc(K,m) = (Enc(K,m),m[1]). Here, m[1] is the first bit of m.

d) Encd(K,m) = (Enc(K,m),Enc(K,m ⊕ 1n)). That is, encrypt m, and then encrypt the bitwise
complement of m.

e) Ence(K,m) = {Enc(K,m),Enc(K,m ⊕ 1n)}. Here, {a, b} denotes an unordered set containing
elements a and b.

f) Encf (K,m) = (Enc(K,m),K).

g) Encg(K,m) = (Enc(K,m),Enc(K,m)). Here, the two calls to Enc each independently samples its
own random coins.

h) Ench(K,m) = (c, c) for c←$ Enc(K,m).

There are several cases:

(1) The new scheme is guaranteed to be secure, no matter how SE works (as long as it is IND-CPA
secure). In this case, prove your claim.

(2) The new scheme is always insecure, no matter what SE does. In this case, show an attack that
works no matter what.

(3) It may be the case that the new scheme is not a correct encryption scheme for some choices of
SE. In this case explain why. Also explain: does the new encryption scheme leak any information
about encrypted messages?

You do not need to explain how to decrypt.

Problem 6. Building hash functions. Let h1 : {0, 1}2m → {0, 1}m be a hash function.

1. Let h2 : {0, 1}4m → {0, 1}m be defined as follows:

� For x ∈ {0, 1}4m define x1, x2 ∈ {0, 1}2m such that x = x1||x2.
� Define h2(x) = h1 (h1(x1)||h1(x2)).

Show that finding a collision in h2 leads to finding a collision in h1.

2. For every i > 2 let hi : {0, 1}2
im → {0, 1}m be defined recursively from hi−1 as follows:

� For x ∈ {0, 1}2im define x1, x2 ∈ {0, 1}2
i−1m such that x = x1||x2.

� Define hi(x) = h1 (hi−1(x1)||hi−1(x2)).

Show that finding a collision in hi leads to finding a collision in h1.

3. Let h′2 : {0, 1}4m → {0, 1}m be any hash function.

h′(x) = h2(x)||h′2(x).

Show that finding a collision in h′ leads to finding a collision in h2 or h′2.
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Problem 7. Building a secure MAC. In this course, you have heard a lot about different cryp-
tographic primitives and their constructions. Not rarely, their security depends on a parameter that
changes daily, e.g. computational power.

To obtain a construction that is more resilient to changes, one sometimes uses two different construc-
tions I1, I2 of the same primitive (e.g. MAC) to build a new primitive of the same type. If combined
properly, the resulting construction might remain secure even if one of the underlying constructions
becomes insecure.

In this problem, we define two such constructions for a MAC scheme I. Your assignment is to prove
that they remain secure even if one of the underlying MAC schemes, I1 = (KGen1,Tag1,Vrf1) or
I2 = (KGen2,Tag2,Vrf2), becomes insecure. [For proof, you should use SUF-CMA security model with
no verification queries.] Suppose that I1 and I2 are deterministic MAC schemes.

a) Let I = (KGen,Tag,Vrf) be a deterministic MAC scheme such that

KGen := (KGen1,KGen2)

and
Tag((k1, k2),m) := (Tag1(k1,m),Tag2(k2,m))

and

Vfy((k1, k2),m, (τ1, τ2)) := If Vfy1(k1,m, τ1) ∧Vfy2(k2,m, τ2) then return 1 else return 0.

Show that I is secure if I1 or I2 is secure.

b) Let I = (KGen,Tag,Vrf) be a deterministic MAC scheme such that

KGen := (KGen1,KGen2)

and
Tag((k1, k2),m) := Tag1(k1,m)⊕ Tag2(k2,m)

and

Vfy((k1, k2),m, τ) := If τ = Tag1(k1,m)⊕ Tag2(k2,m) then return 1 else return 0.

Show that I is secure if I1 or I2 is secure.
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